Respuesta :

we know that

A polynomial in the form [tex]a^{3} +b^{3}[/tex] is called a sum of cubes

so

Let's verify each case to determine the solution

case A) [tex]-64x^{6} y^{12} +125x^{16} y^{3}[/tex]

we know that

[tex]-64=-4^{3}[/tex]

[tex]x^{6}= (x^{2})^{3}[/tex]

[tex]y^{12}= (y^{4})^{3}[/tex]

[tex]125=5^{3}[/tex]

[tex]x^{16}=x^{15} *x=x*(x^{5})^{3}[/tex] -------> is not a perfect cube

[tex]y^{3}= (y)^{3}[/tex]

therefore

the case A) is not a sum of cubes

case B) [tex]-32x^{6} y^{12} +125x^{16} y^{3}[/tex]

we know that

[tex]-32=-2^{5}[/tex] -------> is not a perfect cube

[tex]x^{6}= (x^{2})^{3}[/tex]

[tex]y^{12}= (y^{4})^{3}[/tex]

[tex]125=5^{3}[/tex]

[tex]x^{16}=x^{15} *x=x*(x^{5})^{3}[/tex] -------> is not a perfect cube

[tex]y^{3}= (y)^{3}[/tex]

therefore

the case B) is not a sum of cubes

case C) [tex]32x^{6} y^{12} +125x^{9} y^{3}[/tex]

we know that

[tex]32=2^{5}[/tex] -------> is not a perfect cube

[tex]x^{6}= (x^{2})^{3}[/tex]

[tex]y^{12}= (y^{4})^{3}[/tex]

[tex]125=5^{3}[/tex]

[tex]x^{9}=(x^{3})^{3}[/tex]

[tex]y^{3}= (y)^{3}[/tex]

therefore

the case C) is not a sum of cubes

case A) [tex]64x^{6} y^{12} +125x^{9} y^{3}[/tex]

we know that

[tex]64=4^{3}[/tex]

[tex]x^{6}= (x^{2})^{3}[/tex]

[tex]y^{12}= (y^{4})^{3}[/tex]

[tex]125=5^{3}[/tex]

[tex]x^{9}=(x^{3})^{3}[/tex]

[tex]y^{3}= (y)^{3}[/tex]

Substitute

[tex]4^{3}(x^{2})^{3}(y^{4})^{3} +5^{3}(x^{3})^{3}(y)^{3}[/tex]

[tex](4x^{2}y^{4})^{3} +(5x^{3}y)^{3}[/tex]

therefore

the answer is

[tex]64x^{6} y^{12} +125x^{9} y^{3}[/tex] is a sum of cubes

Sum of cubes is [tex]64x^6y^{12}+125x^{9}y^3[/tex], therefore the correct option is [tex]d[/tex].

Step-by-step explanation:

Given: Expressions of sum of cubes

As we know that  ,

A polynomial in the form [tex]a^3+b^3[/tex] is called a sum of cubes.

Now solving each option one by one:

(a) [tex]-64x^6y^{12}+125x^{16}y^3[/tex]

[tex](-4x^2y^4)^3+(5yx^5)^3x[/tex]

[tex]-64x^6y^{12}[/tex] is a perfect cube but [tex](5yx^5)^3x[/tex] is not a perfect cube.

(b) [tex]-32x^6y^{12}+125x^{16}y^3[/tex]

Here, [tex]-32x^6y^{12}[/tex] and [tex](5yx^5)^3x[/tex] are not a perfect cubes.

(c) [tex]32x^6y^{12}+125x^{9}y^3[/tex]

Here, [tex]32x^6y^{12}[/tex] and [tex](5yx^5)^3x[/tex] are not a perfect cubes.

(d) [tex]64x^6y^{12}+125x^{9}y^3[/tex]

Here, [tex]64x^6y^{12}[/tex] are [tex](5yx^5)^3x[/tex] perfect cube as [tex](4x^2y^4)^3+(5x^3y)^3[/tex].

Hence, the correct option is [tex]d[/tex].

Learn more about Cubic polynomial here:

https://brainly.com/question/5062640?referrer=searchResults