Respuesta :
letter B
(tanx + cotx)(sinxcosx) = 1
[(sinx/cosx) + (cosx/sinx)](sinxcosx) = 1
[(sinxcosx)(sinx/cosx) + (sinxcosx)(cosx/sinx)] = 1
[(sinx)^2 + (cosx)^2] = 1
*Pythagorean Identity*
1 = 1
(tanx + cotx)(sinxcosx) = 1
[(sinx/cosx) + (cosx/sinx)](sinxcosx) = 1
[(sinxcosx)(sinx/cosx) + (sinxcosx)(cosx/sinx)] = 1
[(sinx)^2 + (cosx)^2] = 1
*Pythagorean Identity*
1 = 1
Using trigonometry property, the best option is B.
What is trigonometry?
Trigonometry deals with "the relationship between the sides and the angles of triangles".
According to the question,
[tan x + cot x] (sin x + cos x) = 1
[tex][\frac{sin x}{cos x}+\frac{cos x}{sin x} ] (sin x cos x) = 1[/tex] [tan x = [tex]\frac{sin x}{cos x}[/tex] and cot x = [tex]\frac{cos x}{sin x}[/tex]]
[tex]\frac{sin x}{cos x} (sin x cos x) + \frac{cos x}{sin x}(sin x cos x) =1[/tex]
[tex]sin^{2}x +cos^{2}x = 1[/tex] [By cancellation law]
By the Pythagoras theorem, [tex]sin^{2}x +cos^{2}x = 1[/tex] .
Hence, using trigonometry property, the best option is B.
Learn more about trigonometry here
https://brainly.com/question/26719838
#SPJ2