Answer: [tex]2p(-3p^2+4p-5)=-6p^3+8p^2-10p[/tex]
Step-by-step explanation:
Given expression: [tex]2p(-3p^2+4p-5)[/tex]
We can use distributive property which says that:_
[tex]a(b+c)=ab+ac[/tex], where a ,b and c be any real numbers or variables.
Then, [tex]2p(-3p^2+4p-5)=2p\cdot-3p^2+2p\cdot4p-2p\cdot5[/tex]
[tex]=-6p^{1+2}+8p^{1+1}-10p[/tex]
Now, we use product law of exponent which says that:-
[tex]a^m\times a^n=a^{m+n}[/tex]
[tex]\Rightarrow\ -6p^{1+2}+8p^{1+1}-10p=-6p^3+8p^2-10p[/tex]
Hence, [tex]2p(-3p^2+4p-5)=-6p^3+8p^2-10p[/tex]