Respuesta :
Vertex: (-2, -11)
Focus: ( -2 -87/8)
Axis of Symmetry: x = -2
Directrix: y = -89/8
X / Y
-4/ -3
-3/-9
-2/-11
-1/-9
0/-3
Focus: ( -2 -87/8)
Axis of Symmetry: x = -2
Directrix: y = -89/8
X / Y
-4/ -3
-3/-9
-2/-11
-1/-9
0/-3
Answer:
The vertex of the given parabola is (-2,-11).
Step-by-step explanation:
The given function is
[tex]y=2x^2+8x-3[/tex] .... (1)
The general for of a parabola is
[tex]y=ax^2+bx+c[/tex] .... (2)
then the vertex of the parabola is
[tex](-\frac{b}{2a},f(\frac{-b}{2a}))[/tex]
From (1) and (2), we get
[tex]a=2,b=8,c=-3[/tex]
[tex]-\frac{b}{2a}=-\frac{8}{2(2)}=-2[/tex]
Put x=-2 in the given function.
[tex]y=2(-2)^2+8(-2)-3=-11[/tex]
Therefore the vertex of the given parabola is (-2,-11).