Respuesta :

Vertex: (-2, -11)
Focus: ( -2 -87/8) 
Axis of Symmetry: x = -2
Directrix: y = -89/8

X / Y 
-4/ -3
-3/-9
-2/-11
-1/-9
0/-3

Ver imagen MonkeyLover123

Answer:

The vertex of the given parabola is (-2,-11).

Step-by-step explanation:

The given function is

[tex]y=2x^2+8x-3[/tex]            .... (1)

The general for of a parabola is

[tex]y=ax^2+bx+c[/tex]           .... (2)

then the vertex of the parabola is

[tex](-\frac{b}{2a},f(\frac{-b}{2a}))[/tex]

From (1) and (2), we get

[tex]a=2,b=8,c=-3[/tex]

[tex]-\frac{b}{2a}=-\frac{8}{2(2)}=-2[/tex]

Put x=-2 in the given function.

[tex]y=2(-2)^2+8(-2)-3=-11[/tex]

Therefore the vertex of the given parabola is (-2,-11).