Respuesta :
we know that
The Triangle Inequality Theorem, states that the sum of the lengths of any two sides of the triangle is greater than the length of the third side
so
[tex]AB+AC > BC\\AB+BC > AC\\AC+BC > AB[/tex]
we have
[tex]AB=12\ units\\AC=15\ units\\ BC=x\ units[/tex]
substitute the values
[tex]12+15 > x[/tex] ----->[tex]x < 27\ units[/tex]
[tex]12+x > 15[/tex] -----> [tex]x > 3\ units[/tex]
[tex]15+x > 12[/tex] -----> [tex]x > -3\ units[/tex]
[tex]3\ units < x < 27\ units[/tex]
therefore
the answer is
The value of x must be greater than [tex]3[/tex]
Answer:
x must be greater than 3
Step-by-step explanation:
If ABC is a triangle with sides a,b and c.
Then, it must satisfy:
a<b+c , b<a+c and c<a+b
Let a=12,b=15 and c=x
Then, 12<15+x , 15<12+x and x<12+15
i.e. -3<x , 3<x and x<27
Hence, x must be greater than 3 and less than 27 so that all the conditions are satisfied.
Hence, x must be greater than 3