The diagonal of a TV is 26 inches long. Assuming that this diagonal forms a pair of 30-60-90 right triangles, what are the exact length and width of the TV? A. 13 inches by 13√3 B. 13√2 inches by 13√2 inches C. 52√2 inches by 52√2 inches D. 52 inches by 52√3 inches

Respuesta :

Let

x-------> the length side of the TV

y-------> the width of the TV

d------> the diagonal of a TV

we know that

in a 30-60-90 right triangle

[tex]cos(30\°)=\frac{\sqrt{3}}{2}\\\\sin(30\°)=\frac{1}{2}[/tex]

[tex]d=26\ in[/tex]

[tex]sin(30\°)=\frac{y}{d}[/tex] ----> [tex]y=d*sin(30\°)[/tex]

[tex]cos(30\°)=\frac{x}{d}[/tex] ----> [tex]x=d*cos(30\°)[/tex]

substitute the values

[tex]y=26*\frac{1}{2}=13\ in[/tex]

[tex]x=26*\frac{\sqrt{3}}{2}=13\sqrt{3}\ in[/tex]  

the length side of the TV is [tex]13\sqrt{3}\ in[/tex]  

the width of the TV is [tex]13\ in[/tex]

therefore

the answer is the option A

13 inches by 13√3 inches