Respuesta :

The average rate of change of a function over a closed interval [a,b] is given with : f(b)-f(a)/(b-a).

The interval in our case is [0,1]. The average rate of change fot the function y=3x is:

(3*1-3*0)/(1-0)=3/1=3

 

We will calculate the average rate of changes of all listed functions:

A)    y = 8x + 2

(8*1+2) – (8*0+2)/(1-0)=(10-2)/1=8/1=8

B)     y = 3x + 2

(3*1+2) – (3*0+2)/1=5-2=3

C)    y = 2x

(2*1) – (2*0)/1=2

 

So, smaller average rate of change has the function y=2x.

Answer:

option C has smallest rate of change

Step-by-step explanation:

given points  x = 0 and x = 1

hence putting value in equation y = 3x

                    y = 0   and  y = 3

rate of change of  = [tex]\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{3-0}{1-0} = 3[/tex]

from equation A) y = 8 x + 2

at x = 0   y = 2            and    at x = 1   y = 10

rate of change =   [tex]\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{10-2}{1-0} =8[/tex]

B) y = 3 x + 2

at x = 0   y = 2            and    at x = 1   y = 5

rate of change =   [tex]\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{5-2}{1-0} =3[/tex]

C) y = 2 x

at x = 0   y = 0            and    at x = 1   y = 2

rate of change =   [tex]\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{2-0}{1-0} =2[/tex]

hence, option C has smallest rate of change