Respuesta :

Answers:
_________________________________________________
a)   The length
_________________________________________________________
     The length of the hypotenuse is:  "(mn√61)" .

     The lengths of each of the 3 (THREE) sides are:  5m, 6n, (mn√61).
_________________________________________________________
b)   The area of the triangle:   "15mn  square units " ; 
                            or, write as:  " 15mn units²  ".
_________________________________________________________
Explanation:
__________________________________________________
Area of triangle = (½) * (base) * (height);  that is:

            A = (½ ) * b * h
___________________________________________
         Substitute our known values from the image attached; and plug in these values; to find the area:
________________________________________________

A =  (½ ) * (5m) * (6n) =
↔  
      A = (½) * (6n) * (5m) =

     3n * 5m = " 15mn square units " ;or, write as:  "15mn units² " .
___________________________________________________
Length:  This is a right triangle: 
___________________________________________________
So:  a² + b² = c² ;
  in which "c" is the length of the "hypotenuse"; 
                "a" = the length of one of the other sides ;
                "b" = the length of one of the other sides (not used for "a").
____________________________________________
   Given: a = 5m ; b = 6n ;  Solve for "c"  (the hypotenuse).

   c² = a² + b²  ;

   c² = (5m)² + (6n)² ;

   c² = (5m)(5m)  + (6n)(6n) ;

   c² =  25m²  + 36n² ;

   c = +√(25m²  + 36n²) ;

   c = mn * √(25 + 36)  ;

   c = mn √61
____________________________________________________
So, the length of the hypotenuse is:  "mn√61"

The lengths of each of the 3 (THREE) sides are:  5m, 6n, (mn√61).
_____________________________________________________