Respuesta :

Answer:

The answer is True

Step-by-step explanation:

we know that

The function f(x) is a vertical parabola open downward

so

The equation of f(x) into vertex form is equal to

[tex]f(x)=-a(x-h)^{2}+k[/tex]

where

(h,k) is the vertex of the parabola

Let

[tex]y=f(x)[/tex]

[tex]y=-a(x-h)^{2}+k[/tex]

Exchanges the variables x for y and y for x

[tex]x=-a(y-h)^{2}+k[/tex]

Isolate the variable y

[tex]x-k=-a(y-h)^{2}[/tex]

the coefficient a is negative

[tex](x-k)/(-a)=(y-h)^{2}[/tex]

[tex](k-x)/a=(y-h)^{2}[/tex]

[tex]y=(+/-)\sqrt{(k-x)/a}+h[/tex]

Let

[tex]f^{-1}(x)=y[/tex]

[tex]f^{-1}(x)=(+/-)\sqrt{(k-x)/a}+h[/tex] ------> inverse of the function f(x)

therefore

The inverse of f(x) is a function