Respuesta :
Answer: 0.46
Step-by-step explanation:
We know that when two events X and Y are mutually exclusive, then
[tex]\text{P(X or Y)}=P(X)+P(Y),\ \ \ \text{Since }P(X\cap Y)=0[/tex]
Given: A and B are mutually exclusive events, with
P(A) = 0.19 and P(B) = 0.2
Now, [tex]\text{P(A or B)=P(A)+P(B)}\\\\\Rightarrow\text{P( A or B)}=0.19+0.27\\\\\Rightarrow\text{P( A or B)}=0.46[/tex]