Respuesta :
Because [tex]180^\circ<x<270^\circ[/tex], you should expect [tex]90^\circ<\dfrac x2<135^\circ[/tex], so that [tex]\dfrac x2[/tex] is an angle in the second quadrant. In this quadrant, you have [tex]\sin\dfrac x2>0[/tex], [tex]\cos\dfrac x2<0[/tex], and [tex]\tan\dfrac x2<0[/tex].
Recall the half-angle identity for sine and cosine:
[tex]\sin^2\dfrac x2=\dfrac{1-\cos x}2\implies \sin\dfrac x2=\pm\sqrt{\dfrac{1-\cos x}2}[/tex]
[tex]\cos^2\dfrac x2=\dfrac{1+\cos x}2\implies\cos\dfrac x2=\pm\sqrt{\dfrac{1+\cos x}2}[/tex]
From these, you can derive the tangent half-angle identity, but that won't be needed, since you can just rely on the definition for tangent, [tex]\tan x=\dfrac{\sin x}{\cos x}[/tex].
You know which sign you expect these expression to have from the given domain, so
[tex]\sin\dfrac x2=\sqrt{\dfrac{1-\left(-\frac{12}{13}\right)}2}=\dfrac5{\sqrt{26}}[/tex]
[tex]\cos\dfrac x2=-\sqrt{\dfrac{1+\left(-\frac{12}{13}\right)}2}=-\dfrac1{\sqrt{26}}[/tex]
So,
[tex]\tan\dfrac x2=\dfrac{\frac5{\sqrt{26}}}{-\frac1{\sqrt{26}}}=-5[/tex]
Recall the half-angle identity for sine and cosine:
[tex]\sin^2\dfrac x2=\dfrac{1-\cos x}2\implies \sin\dfrac x2=\pm\sqrt{\dfrac{1-\cos x}2}[/tex]
[tex]\cos^2\dfrac x2=\dfrac{1+\cos x}2\implies\cos\dfrac x2=\pm\sqrt{\dfrac{1+\cos x}2}[/tex]
From these, you can derive the tangent half-angle identity, but that won't be needed, since you can just rely on the definition for tangent, [tex]\tan x=\dfrac{\sin x}{\cos x}[/tex].
You know which sign you expect these expression to have from the given domain, so
[tex]\sin\dfrac x2=\sqrt{\dfrac{1-\left(-\frac{12}{13}\right)}2}=\dfrac5{\sqrt{26}}[/tex]
[tex]\cos\dfrac x2=-\sqrt{\dfrac{1+\left(-\frac{12}{13}\right)}2}=-\dfrac1{\sqrt{26}}[/tex]
So,
[tex]\tan\dfrac x2=\dfrac{\frac5{\sqrt{26}}}{-\frac1{\sqrt{26}}}=-5[/tex]
[tex]\rm sin\dfrac{1}{2}x=\sqrt{\dfrac{25}{26}}\\\\cos\dfrac{1}{2}x=-\sqrt{\dfrac{1}{26}}\\\\tan\dfrac{1}{2}x=-5[/tex]
Further explanation
Trigonometry is the science of mathematics that studies the relationship between sides and angles in triangles
In a cartesian plane, the angle α can vary from 0 ° to 360 °, counterclockwise
This coordinate field is divided into 4 quadrants:
- quadrant 1: 0 ° - 90 °
- quadrant 2: 90 ° - 180 °
- quadrant 3: 180 ° - 270 °
- quadrant 4: 270 ° - 360 °
For half angle we can find it from double angle
Trigonometry Formulas for Double Angles:
sin 2A = 2 sin A cos A
cos 2A = 1 - 2 sin²A = 2cos²A-1
tan 2A = 2 tan A / 1-tan²A
then:
cos 2A = 2cos²A-1
[tex]\rm cos\:A=2cos^2\dfrac{1}{2}A-1\\\\2cos^2\frac{1}{2}A=1+cos\:A\\\\cos^2\frac{1}{2}A=\dfrac{1+cos\:A}{2}\\\\cos\:\frac{1}{2}A=\sqrt{\dfrac{1+cos\:A}{2} }[/tex]
cos 2A = 1-2 sin²A
in the same way
[tex]\rm sin\dfrac{1}{2}A=\sqrt{\dfrac{1-cos\:A}{2} }[/tex]
[tex]\rm tan\dfrac {1} {2}A = \sqrt {\dfrac {1-cos\:A} {1+cos\:A}}[/tex]
input the value : cos x = −15/17
Because x in the quadrant III (180° < x < 270°) , then
[tex]\rm \dfrac{1}{2}x\Rightarrow quadrant\:II[/tex]
For quadrant I, only sin have positif value, for cos and tan have negatif value
[tex]\rm sin\dfrac{1}{2}x=\sqrt{\dfrac{1-cos\:x}{2} }[/tex]
[tex]\rm sin\dfrac{1}{2}x=\sqrt{\dfrac{1-(-\dfrac{12}{13}) }{2} }\\\\sin\dfrac{1}{2}x=\sqrt{\dfrac{1\dfrac{12}{13} }{2} }=\sqrt{\dfrac{25}{26} }[/tex]
[tex]\rm cos\:\frac{1}{2}x=-\sqrt{\dfrac{1+cos\:x}{2} }\\\\cos\:\frac{1}{2}x=-\sqrt{\dfrac{1-\dfrac{12}{13} }{2} }=-\sqrt{\dfrac{1}{26} }[/tex]
[tex]\rm tan\dfrac {1} {2}x =-\sqrt {\dfrac {1-cos\:x} {1+cos\:x}}\\\\tan\dfrac {1} {2}x =-\sqrt {\dfrac {1+\frac{12}{13} } {1-\frac{12}{13} }}\\\\tan\dfrac{1}{2}x=-\sqrt{\dfrac{\dfrac{25}{13}}{\dfrac{1}{13} } }=-\sqrt{25}=-5[/tex]
Learn more
trigonometric ratio
brainly.com/question/9880052
Prove the converse of the Pythagorean Theorem
brainly.com/question/1597216
trigonometric identities
https://brainly.com/question/5013374