Respuesta :
[tex] \sqrt{x-8} +8=x \\ \sqrt{x-8} =x-8 \\ {( \sqrt{x-8} )}^{2} = {(x-8)}^{2} \\ x-8= x^{2} -16x+64 \\ x^{2} -16x-x+64+8=0 \\ x^{2} -17x+72=0[/tex]
[tex](x-8)(x-9)=0 \\ x-8=0 \ and \ x-9=0 \\ x=8 \ and \ x=9[/tex]
[tex](x-8)(x-9)=0 \\ x-8=0 \ and \ x-9=0 \\ x=8 \ and \ x=9[/tex]
Answer:
Step-by-step explanation:
According to the question, the equation becomes,
[tex]\sqrt{x-8}+8=x[/tex]
⇒[tex]\sqrt{x-8}=x-8[/tex]
Squaring on both the sides, we get
⇒[tex]x-8=(x-8)^2[/tex]
⇒[tex]x-8=x^2-16x+64[/tex]
⇒[tex]x^2-16x-x+64+8=0[/tex]
⇒[tex]x^2-17x+72=0[/tex]
⇒[tex]x^2-8x-9x+72=0[/tex]
⇒[tex]x(x-8)-9(x-8)=0[/tex]
⇒[tex](x-8)(x-9)=0[/tex]
Then, (x-8)=0
⇒x=8
and (x-9)=0
⇒x=9
Thus, the solution of the given equation is x=8 and x=9.