Respuesta :
Answer: [B]: There are "2" (two) real solutions.
___________________________________________________
Explanation:
___________________________________________________
Given: -11x² − 10x = -1 ;
___________________________________________________
Let us see if we can write this in "quadratic format" ; that is:
___________________________________________________
ax² + bx + c = 0 ; a ≠ 0 ;
___________________________________________________
So, given: -11x² − 10x = -1 ;
Add "1" to EACH side of the equation;
___________________________________________________
-11x² − 10x + 1 = -1 + 1 ;
___________________________________________________
to get: -11x² − 10x + 1 = 0 ;
___________________________________________________
Now, let us multiply the ENTIRE equation by "-1";
to get rid of the "negative sign" ;
___________________________________________________
-1 * { -11x² − 10x + 1 = 0 } ;
___________________________________________________
11x² + 10x − 1 = 0 ;
___________________________________________________
This equation is written in quadratic format:
___________________________________________________
" ax² + bx + c = 0 " ; in which: a = 11 ; b = 10 ; c = -1 ;
___________________________________________________
Can the equation: " 11x² + 10x − 1 = 0 " ; be factored? Yes! ;
_____________________________________________________
→ (x + 1) (11x − 1) = 0 ; There are two solutions;
the equation holds true when EITHER of the TWO MULTIPLICANDS ; or both of them, are equal to "0"; since anything multiplied by "0" equals "0" .
_____________________________________________________
So, (x + 1) = 0 ;
Subtract "1" from each side of the equation;
x + 1 − 1 = 0 − 1 ;
to get: x = -1
_____________________________________________________
So, 11x − 1 = 0 ;
Add "1" to each side of the equation;
11x − 1 + 1 = 0 + 1 ;
to get: 11x = 1 ;
_____________________________________________________
Divide EACH side of the equation by "11"; to isolate "x" on one side of the equation; and to solve for "x" ;
_____________________________________________________
11x/11 = 1/11; x = 1/11 = 0.0909090909090909.......
___________________________________________
So, yes; there are 2 (two) real solutions.
__________________________________________________
___________________________________________________
Explanation:
___________________________________________________
Given: -11x² − 10x = -1 ;
___________________________________________________
Let us see if we can write this in "quadratic format" ; that is:
___________________________________________________
ax² + bx + c = 0 ; a ≠ 0 ;
___________________________________________________
So, given: -11x² − 10x = -1 ;
Add "1" to EACH side of the equation;
___________________________________________________
-11x² − 10x + 1 = -1 + 1 ;
___________________________________________________
to get: -11x² − 10x + 1 = 0 ;
___________________________________________________
Now, let us multiply the ENTIRE equation by "-1";
to get rid of the "negative sign" ;
___________________________________________________
-1 * { -11x² − 10x + 1 = 0 } ;
___________________________________________________
11x² + 10x − 1 = 0 ;
___________________________________________________
This equation is written in quadratic format:
___________________________________________________
" ax² + bx + c = 0 " ; in which: a = 11 ; b = 10 ; c = -1 ;
___________________________________________________
Can the equation: " 11x² + 10x − 1 = 0 " ; be factored? Yes! ;
_____________________________________________________
→ (x + 1) (11x − 1) = 0 ; There are two solutions;
the equation holds true when EITHER of the TWO MULTIPLICANDS ; or both of them, are equal to "0"; since anything multiplied by "0" equals "0" .
_____________________________________________________
So, (x + 1) = 0 ;
Subtract "1" from each side of the equation;
x + 1 − 1 = 0 − 1 ;
to get: x = -1
_____________________________________________________
So, 11x − 1 = 0 ;
Add "1" to each side of the equation;
11x − 1 + 1 = 0 + 1 ;
to get: 11x = 1 ;
_____________________________________________________
Divide EACH side of the equation by "11"; to isolate "x" on one side of the equation; and to solve for "x" ;
_____________________________________________________
11x/11 = 1/11; x = 1/11 = 0.0909090909090909.......
___________________________________________
So, yes; there are 2 (two) real solutions.
__________________________________________________