Respuesta :
Hey
Let the distance d meet AB at D.
Using trig:
AD = d*cot(θ) = d*cot(13 deg)
BD = d*cot(ϕ) = d*cot(31 deg)
So:
AB = AD + BD
30 km = d*cot(13 deg) + d*cot(31 deg)
30 km = d*[cot(13 deg) + cot(31 deg)]
d = (30 km)/[cot(13 deg) + cot(31 deg)] = 5.0035 km (round as needed).
Hoped That Helped You
Let the distance d meet AB at D.
Using trig:
AD = d*cot(θ) = d*cot(13 deg)
BD = d*cot(ϕ) = d*cot(31 deg)
So:
AB = AD + BD
30 km = d*cot(13 deg) + d*cot(31 deg)
30 km = d*[cot(13 deg) + cot(31 deg)]
d = (30 km)/[cot(13 deg) + cot(31 deg)] = 5.0035 km (round as needed).
Hoped That Helped You
The distance between the fire towers and the fire is an illustration of bearing and distance
The distance d of the fire from segment AB is 24.76 kilometers
The given parameters are:
[tex]AB = 27[/tex]
[tex]\theta = 70^o[/tex]
[tex]\omega = 54^o[/tex]
Calculate distance d (see attachment) using tangent ratio.
Considering triangle BCD, we have:
[tex]\tan(54) = \frac{d}{27 - x}[/tex]
Make d the subject
[tex]d = (27 - x)\times \tan(54)[/tex]
Considering triangle ACD, we have:
[tex]\tan(70) = \frac{d}{x}[/tex]
Make d the subject
[tex]d =x \times \tan(70)[/tex]
Substitute [tex]d =x \times \tan(70)[/tex] in [tex]d = (27 - x)\times \tan(54)[/tex]
[tex]x \times \tan(70) = (27 - x) \times \tan(54)[/tex]
[tex]x \times 2.7475 = (27 - x) \times 1.3764[/tex]
[tex]2.7475x = (27 - x) \times 1.3764[/tex]
Open brackets
[tex]2.7475x = 37.1628 - 1.3764x[/tex]
Collect like terms
[tex]2.7475x +1.3764x= 37.1628[/tex]
[tex]4.1239x= 37.1628[/tex]
Divide both sides by 4.1239
[tex]x= 9.0112[/tex]
Substitute [tex]x= 9.0112[/tex] in [tex]d =x \times \tan(70)[/tex]
[tex]d = 9.0112 \times \tan(70)[/tex]
[tex]d = 24.76[/tex]
Hence, the distance d of the fire from segment AB is 24.76 kilometers
Read more about bearing and distance at:
https://brainly.com/question/19017345