Respuesta :
2x^3 + x^2 - 4x - (9x^3 - 3x^2) =
2x^3 + x^2 - 4x - 9x^3 + 3x^2 =
-7x^3 + 4x^2 - 4x <===
2x^3 + x^2 - 4x - 9x^3 + 3x^2 =
-7x^3 + 4x^2 - 4x <===
Answer:
option (2) is correct.
[tex](2x^3+x^2-4x)-(9x^3-3x^2)=-7x^3+4x^2-4x[/tex]
Step-by-step explanation:
Given expression [tex](2x^3+x^2-4x)-(9x^3-3x^2)[/tex]
We have to choose the correct option that correctly simplify the given expression.
Consider the given expression [tex](2x^3+x^2-4x)-(9x^3-3x^2)[/tex]
Opening the brackets , we get,
Applying plus-minus rule, [tex]-(-a)=+a[/tex]
[tex](2x^3+x^2-4x)-(9x^3-3x^2)=2x^3+x^2-4x-9x^3+3x^2[/tex]
LIKE TERMS are terms having same variable with same degree.
Adding like term , we get,
[tex](2x^3+x^2-4x)-(9x^3-3x^2)=(2-9)x^3+(3+1)x^2-4x[/tex]
[tex](2x^3+x^2-4x)-(9x^3-3x^2)=-7x^3+4x^2-4x[/tex]
Thus, option (2) is correct.