Answer:
-------------------------------------
We can see AB and AC are perpendicular.
Verify it by comparing slopes:
- Slope of AB = (1 - 4)/(4 - 1) = - 3/3 = - 1
- Slope of AC = (0 - 4)/(- 3 - 1) = - 4/ - 4 = 1
Since the product of the slopes is - 1, the segments are perpendicular.
Find the length of AB and AC:
- [tex]AB=\sqrt{(4-1)^2+(1-4)^2}=\sqrt{9+9} =\sqrt{9*2} =3\sqrt{2}[/tex]
- [tex]AC=\sqrt{(1+3)^2+(0-4)^2}=\sqrt{16+16} =\sqrt{16*2} =4\sqrt{2}[/tex]
Find the area:
- [tex]A = 1/2*AB*AC=1/2*3\sqrt{2}*4\sqrt{2}=12[/tex]