Respuesta :

bcalle
5pi/4 is located in quadrant III.
In Q III, sin and cos are negative, tan is positive.
T-bar for 5pi/4 is pi/4.
sin and cos are - (sqrt 2)/2
Tan is 1

The value of [tex]$\sin \frac{5\pi }{4}$[/tex]  and [tex]$\cos \frac{5\pi }{4}$[/tex] is [tex]$-\frac{\sqrt{2}}{2}$[/tex] and [tex]$\tan \frac{5\pi }{4}$[/tex] is [tex]$1$[/tex] .

Learn more about unit of circle

The unit circle has a radius of one and is centered at the origin. The unit circle's equation is

[tex]x^2+y^2=1[/tex]

We have to find the value of [tex]$\sin \frac{5\pi }{4}$[/tex], [tex]$\cos \frac{5\pi }{4}$[/tex] and [tex]$\tan \frac{5\pi }{4}$[/tex].

Write [tex]$\sin \left( \frac{5\pi }{4} \right)$[/tex]as [tex]$\sin \left( \pi +\frac{\pi }{4} \right)$[/tex].

    [tex]$=\sin \left( \pi +\frac{\pi }{4} \right)$[/tex]

Use the summation identity,

[tex]$\sin \left( x+y \right)=\sin \left( x \right)\cdot \cos \left( y \right)+\cos \left( x \right)\cdot \sin \left( y \right)$[/tex]

     [tex]$=\sin \left( \pi \right)\cdot \cos \left( \frac{\pi }{4} \right)+\cos \left( \pi \right)\cdot \sin \left( \frac{\pi }{4} \right)$[/tex]

Use the following trivial identity,

[tex]$\cos \left( \pi \right)=\left( -1 \right)$[/tex]

[tex]$\sin \left( \pi \right)=0$[/tex]

[tex]$\cos \left( \frac{\pi }{4} \right)=\frac{\sqrt{2}}{2}$[/tex]

And

[tex]$\sin \left( \frac{\pi }{4} \right)=\frac{\sqrt{2}}{2}$[/tex]

So,

[tex]$=0\cdot \frac{\sqrt{2}}{2}+\left( -1 \right)\cdot \frac{\sqrt{2}}{2}$[/tex]

[tex]$\therefore \sin \frac{5\pi }{4}=-\frac{\sqrt{2}}{2}$[/tex]

The value for [tex]$\cos \frac{5\pi }{4}$[/tex] is same as [tex]$\sin \frac{5\pi }{4}$[/tex].

Solve for [tex]$\tan \frac{5\pi }{4}$[/tex].

Rewrite

[tex]$\tan \frac{5\pi }{4}=\tan \frac{\pi }{4}$[/tex]

Use the following trivial identity,

[tex]$\tan \left( \frac{\pi }{4} \right)=1$[/tex]

[tex]$\therefore \tan \left( \frac{5\pi }{4} \right)=1$[/tex]

Hence, the value is,

[tex]$\sin \left( \frac{5\pi }{4} \right)=-\frac{\sqrt{2}}{2}$[/tex],

[tex]$\cos \left( \frac{5\pi }{4} \right)=-\frac{\sqrt{2}}{2}$[/tex],

and

[tex]$\tan \left( \frac{5\pi }{4} \right)=1$[/tex]

Learn more about unit of circle here,

https://brainly.com/question/457207

#SPJ2