PLEASE HELP ME !!!!!

1 ) The rate of vibration of a string under constant tension varies inversely with the length of the string. If a string is 24 inches long and vibrates 128 times per second, what is the length of a string that vibrates 64 times per second?

48 inches
46 inches
42 inches
55 inches

------------------------------------------------------------------

2 ) The horsepower (hp) that a shaft can safely transmit varies jointly with its speed (in revolutions per minute - rpm) and the cube of the diameter. If the shaft of a certain material 3 inches in diameter can transmit 45hp at 100 rpm, what must the diameter be in order to transmit 60hp at 150rpm?

24
[tex]\sqrt[3]{150}[/tex]
[tex]2\sqrt[3]{3}[/tex]
[tex]4\sqrt[3]{6}[/tex]

Respuesta :

Answer:

[tex]\textsf{1)\quad 48\;inches}[/tex]

[tex]\textsf{2)\quad$2\sqrt[3]{3}$\; inches}[/tex]

Step-by-step explanation:

Question 1

Define the variables:

  • Let x be the length of the string.
  • Let y be the rate of vibration of a string under constant tension.

The rate of vibration of a string under constant tension varies inversely with the length of the string:

[tex]\boxed{y \propto \dfrac{1}{x} \implies y=\dfrac{k}{x}\quad\text{for a constant $k$}}[/tex]

Given values:

  • x = 24 inches
  • y = 128 times per second

Substitute the given values of x and y into the formula and solve for k:

[tex]\implies 128=\dfrac{k}{24}[/tex]

[tex]\implies k=128 \cdot 24[/tex]

[tex]\implies k=3072[/tex]

Therefore, the equation is:

[tex]y=\dfrac{3072}{x}[/tex]

To find the length of a string that vibrates 64 times per second, substitute y = 64 into the equation and solve for x:

[tex]\implies 64=\dfrac{3072}{x}[/tex]

[tex]\implies x=\dfrac{3072}{64}[/tex]

[tex]\implies x=48[/tex]

Therefore, the length of a string that vibrates 64 times per second is 48 inches.

---------------------------------------------------------------------------------------------

Question 2

Define the variables:

  • Let y be the horsepower (hp) that a shaft can safely transmit.
  • Let v be the speed of the shaft (in rpm).
  • Let d be the diameter of the shaft (in inches).

The horsepower that a shaft can safely transmit varies jointly with its speed and the cube of the diameter:

[tex]\boxed{y \propto vd^3 \implies y=kvd^3\quad\text{for a constant $k$}}[/tex]

Given values:

  • y = 45 hp
  • v = 100 rpm
  • d = 3 inches

Substitute the given values of y, v and d into the formula and solve for k:

[tex]\implies 45=k \cdot 100 \cdot 3^3[/tex]

[tex]\implies 45=k \cdot 100 \cdot 27[/tex]

[tex]\implies 45=2700k[/tex]

[tex]\implies k=\dfrac{45}{2700}=\dfrac{1}{60}[/tex]

Therefore, the equation is:

[tex]y=\dfrac{vd^3}{60}[/tex]

To find the diameter of the shaft in order to transmit 60 hp at 150 rpm, substitute y = 60 and v = 150 into the equation and solve for d:

[tex]\implies 60=\dfrac{150d^3}{60}[/tex]

[tex]\implies 3600=150d^3[/tex]

[tex]\implies d^3=\dfrac{3600}{150}[/tex]

[tex]\implies d^3=24[/tex]

[tex]\implies d=\sqrt[3]{24}[/tex]

[tex]\implies d=\sqrt[3]{8 \cdot 3}[/tex]

[tex]\implies d=\sqrt[3]{8} \sqrt[3]{3}[/tex]

[tex]\implies d=\sqrt[3]{2^3} \cdot \sqrt[3]{3}[/tex]

[tex]\implies d=2\sqrt[3]{3}[/tex]

Therefore, the diameter of a shaft that transmits 60 hp at 150 rpm is 2³√3 inches.