Respuesta :

Given the equations:

[tex]A=3x+7[/tex][tex]B=2x^2-1[/tex][tex]C=7x^2-3x[/tex]

• You need to add them in order to find:

[tex]A+B+C[/tex]

Set p that:

[tex]A+B+C=(3x+7)+(2x^2-1)+(7x^2-3x)[/tex]

Remember the Sign Rules for Multiplication:

[tex]\begin{gathered} +\cdot+=+ \\ -\cdot-=+ \\ +\cdot-=- \\ -\cdot+=- \end{gathered}[/tex]

Then, you know that the positive signs between the parentheses do not change the signs inside of them:

[tex]A+B+C=3x+7+2x^2-1+7x^2-3x[/tex]

Combine the like terms (these are defined as those terms that have the same variables with the same exponents). Then:

[tex]A+B+C=9x^2+6[/tex]

• Subtract the equations in order to find:

[tex]A-B-C[/tex]

Set up that:

[tex]A-B-C=(3x+7)-(2x^2-1)-(7x^2-3x)[/tex]

Simplify it by distributing the negative signs and then combining the like terms:

[tex]A-B-C=3x+7-2x^2+1-7x^2+3x[/tex][tex]A-B-C=-9x^2+6x+8[/tex]

Hence, the answer is:

[tex]A+B+C=9x^2+6[/tex][tex]A-B-C=-9x^2+6x+8[/tex]