-2x^2+48x = 0
The expression is written in the form:
ax^2 + bx + c = 0
Where:
a = -2
b= 48
c= 0
Apply the quadratic formula:
[tex]\frac{-b\pm\sqrt[]{b^2-4\cdot a\cdot c}}{2\cdot a}[/tex]Replacing;
[tex]\frac{-48\pm\sqrt[]{48^2-4\cdot-2\cdot0}}{2\cdot-2}[/tex][tex]\frac{-48\pm\sqrt[]{2304}}{-4}[/tex][tex]\frac{-48\pm48}{-4}[/tex]Positive;
[tex]\frac{-48+48}{-4}=\frac{0}{-4}=0[/tex]Negative:
[tex]\frac{-48-48}{-4}=\frac{-96}{-4}=24[/tex]The 2 solutions are x =0 or x =24
In the context of the problem, 24 makes sense since 0 means no distance.