Respuesta :

Answer:

Explanation:

The volume of the similar figures are:

[tex]\begin{gathered} V_A=2240m^3 \\ \\ V_B=4375m^3 \end{gathered}[/tex]

The ratio of the volume of two similar figures is the cube of their scale factor

[tex]\begin{gathered} \frac{V_A}{V_B}=\frac{2240}{4375} \\ \\ \frac{V_A}{V_B}=0.512 \\ \\ 0.512=(Scale\text{ Factor\rparen}^3 \\ \\ Scale\text{ Factor=}\sqrt[3]{0.512} \\ \\ Scale\text{ Factor = 0.8} \end{gathered}[/tex]

The ratio of the surface area is the square of the scale factor

[tex]\begin{gathered} \frac{S_A}{S_B}=0.8^2 \\ \\ \frac{928}{S_B}=0.64 \\ \\ S_B=\frac{928}{0.64} \\ \\ S_B=1450m^2 \end{gathered}[/tex]

The surface area of the larger figure is 1450 m^2