Answer:
[tex]\sqrt[6]{n^{23}}[/tex]Explanation:
The given expression is
[tex]\sqrt{n^5}\sqrt[3]{n^4}[/tex]To simplify, we first need to write them in exponent form
[tex]n^{\frac{5}{2}}\cdot n^{\frac{4}{3}}[/tex]Now, we can add the exponents
[tex]\begin{gathered} n^{\frac{5}{2}}\cdot n^{\frac{4}{3}}=n^{\frac{5}{2}+\frac{4}{3}}=n^{\frac{23}{6}} \\ \\ Because \\ \frac{5}{2}+\frac{4}{3}=\frac{5(3)+2(4)}{2(3)}=\frac{15+8}{6}=\frac{23}{6} \end{gathered}[/tex]Finally, we can write the expression in radical form
[tex]n^{\frac{23}{6}}=\sqrt[6]{n^{23}}[/tex]Therefore, the answer is
[tex]\sqrt[6]{n^{23}}[/tex]