In this figure, the curve y= 3x+2-2x^2 cuts the x-axis at two points A and B, and the y-axis at the point C. Find the coordinates of A, B and C

In this figure the curve y 3x22x2 cuts the xaxis at two points A and B and the yaxis at the point C Find the coordinates of A B and C class=

Respuesta :

To find the x-coordinates of A and B, find the zeroes of the equation (set y=0 and solve for x).

[tex]y=3x+2-2x^2[/tex]

If y=0 then:

[tex]0=3x+2-2x^2[/tex]

Writing this quadratic equation in standard form, we get:

[tex]2x^2-3x-2=0[/tex]

Use the quadratic formula to find the solutions for x:

[tex]\begin{gathered} \Rightarrow x=\frac{-(-3)\pm\sqrt[]{(-3)^2-4(2)(-2)}}{2(2)} \\ =\frac{3\pm\sqrt[]{9+16}}{4} \\ =\frac{3\pm\sqrt[]{25}}{4} \\ =\frac{3\pm5}{4} \\ \Rightarrow x_1=\frac{3+5}{4}=\frac{8}{4}=2 \\ \Rightarrow x_2=\frac{3-5}{4}=\frac{-2}{4}=-\frac{1}{2} \end{gathered}[/tex]

Then, the x-coordinate of A is -1/2, and the x-coordinate of B is 2. Both the y-coordinate of A and B are 0.

On the other hand, to find the y-coordinate of C, which is the point where the graph crosses the Y-axis, replace x=0:

[tex]\begin{gathered} y=3(0)+2-2(0)^2 \\ =2 \end{gathered}[/tex]

Therefore, the coordinates of A, B and C are:

[tex]\begin{gathered} A(-\frac{1}{2},0) \\ B(2,0) \\ C(0,2) \end{gathered}[/tex]