ANSWER:
B.
[tex]x^{\frac{7}{6}}[/tex]STEP-BY-STEP EXPLANATION:
We have the following expression:
[tex]\mleft(\sqrt{x}\mright)\mleft(\sqrt[3]{x^2}\mright)[/tex]We simplify and we have:
[tex]\begin{gathered} (\sqrt[]{x})=x^{\frac{1}{2}} \\ (\sqrt[3]{x^2})=x^{\frac{2}{3}} \\ \text{therefore:} \\ x^{\frac{1}{2}}\cdot x^{\frac{2}{3}}=x^{\frac{1}{2}+\frac{2}{3}} \\ \frac{1}{2}+\frac{2}{3}=\frac{1\cdot3+2\cdot2}{2\cdot3}=\frac{3+4}{6}=\frac{7}{6} \\ x^{\frac{7}{6}} \end{gathered}[/tex]