To write the vector s in the form s=ai + bj, we can use the next formula:
[tex]\vec{s}=(x_2-x_1)\vec{i}+(y_2-y_1)\vec{j}[/tex]Where (x1,y1) are the coordinates of the initial point and (x2,y2) are the coordinates of the terminal point, by replacing these values we have:
[tex]\begin{gathered} \vec{s}=((-1)-(-2))\vec{i}+(3-(-4))\vec{j} \\ \vec{s}=((-1)+2)\vec{i}+(3+4)\vec{j} \\ \vec{s}=(1)\vec{i}+(7)\vec{j} \end{gathered}[/tex]Then the vector s in the form s=ai+bj is: s= 1i + 7j