Answer:
Given that,
To find the equation which shows Pythagoras identity is true for theta=3 pi/2
The equation is of the form,
[tex]\sin ^2(\frac{3\pi}{2})+\cos ^2(\frac{3\pi}{2})=1[/tex]we have that,
[tex]\frac{3\pi}{2}=\pi+\frac{\pi}{2}[/tex]Using this we get,
[tex]\begin{gathered} \sin \frac{3\pi}{2}=\sin (\pi+\frac{\pi}{2}) \\ =-\sin (\frac{\pi}{2}) \\ \sin \frac{3\pi}{2}=-1----\mleft(1\mright) \end{gathered}[/tex][tex]\cos \frac{3\pi}{2}=\cos (\pi+\frac{\pi}{2})=0-----(2)[/tex]Substitute the values in the given equation we get,
[tex](-1)^2+0^2=1[/tex]Answer is: Option B:
[tex](-1)^2+0^2=1[/tex]