Respuesta :

The given problem can be exemplified in the following diagram:

The conditions are:

[tex]\begin{gathered} m\angle ABD=6x+5 \\ m\angle ABC=10x+7 \\ m\angle DBC=36 \end{gathered}[/tex]

We also have the following relationship:

[tex]m\angle ABD+m\angle DBC=m\angle ABC[/tex]

Substituting the values we get:

[tex]6x+5+36=10x+7[/tex]

Solving the operations:

[tex]6x+41=10x+7[/tex]

Now we solve for "x", first by subtracting 10x on both sides:

[tex]\begin{gathered} 6x-10x+41=10x-10x+7 \\ -4x+41=7 \end{gathered}[/tex]

Now we subtract 41 on both sides:

[tex]\begin{gathered} -4x+41-41=7-41 \\ -4x=-34 \end{gathered}[/tex]

Now we divide both sides by -4

[tex]x=-\frac{34}{-4}=\frac{17}{2}[/tex]

Now we replace the value of "x" in the expression for angle ABD:

[tex]\angle ABD=6x+5[/tex]

Replacing the value of "x":

[tex]\angle ABD=6(\frac{17}{2})+5[/tex]

Solving the operations:

[tex]\angle ABD=3(17)+5=56[/tex]

Therefore angle ABD is 56 degrees.

Ver imagen YadelinO69479