The given problem can be exemplified in the following diagram:
The conditions are:
[tex]\begin{gathered} m\angle ABD=6x+5 \\ m\angle ABC=10x+7 \\ m\angle DBC=36 \end{gathered}[/tex]We also have the following relationship:
[tex]m\angle ABD+m\angle DBC=m\angle ABC[/tex]Substituting the values we get:
[tex]6x+5+36=10x+7[/tex]Solving the operations:
[tex]6x+41=10x+7[/tex]Now we solve for "x", first by subtracting 10x on both sides:
[tex]\begin{gathered} 6x-10x+41=10x-10x+7 \\ -4x+41=7 \end{gathered}[/tex]Now we subtract 41 on both sides:
[tex]\begin{gathered} -4x+41-41=7-41 \\ -4x=-34 \end{gathered}[/tex]Now we divide both sides by -4
[tex]x=-\frac{34}{-4}=\frac{17}{2}[/tex]Now we replace the value of "x" in the expression for angle ABD:
[tex]\angle ABD=6x+5[/tex]Replacing the value of "x":
[tex]\angle ABD=6(\frac{17}{2})+5[/tex]Solving the operations:
[tex]\angle ABD=3(17)+5=56[/tex]Therefore angle ABD is 56 degrees.