Let's check if the given equation is a special product.
[tex]16x^2+56x+49[/tex]Let,
a = 1st term coefficien
b = 2nd term coefficient
c = constant
We get,
a = 16
b = 56
c = 49
Let's check, you can use this method to check if it is a perfect square binomial:
[tex]\begin{gathered} \text{ 2(}\sqrt[]{a}\text{ x }\sqrt[]{c})\text{ = b ;} \\ (a+c)^2\text{ if b is positive} \\ (a-c)^2\text{ if b is negative} \end{gathered}[/tex][tex]\begin{gathered} 2(\sqrt[]{16}\text{ x }\sqrt[]{49})\text{ = 56} \\ 2(4\text{ x 7) = 56 ; since b is positive, a and c are positive} \\ 2(28)\text{ = 56} \\ 56\text{ = 56} \end{gathered}[/tex]Therefore, the equation is a special product. It is a square of a binomial.
The answer is YES, it is a special product. It is a Square of a Binomial (x + y)².