Answer:
1 and -3.
Explanation:
Given the quadratic polynomial:
[tex]a^2+2a-3=0[/tex]To use the completing the square method to find the zeros, follow the steps below:
Step 1: Take the constant to the right-hand side.
[tex]a^2+2a=3[/tex]Step 2: Divide the coefficient of a by 2, square it and add it to both sides.
[tex]a^2+2a+(1)^2=3+(1)^2[/tex]Step 3: Write the left-hand side as a perfect square.
[tex](a+1)^2=4[/tex]Step 4: Take the square root of both sides.
[tex]a+1=\pm\sqrt[]{4}[/tex]Step 5: Solve for a.
[tex]\begin{gathered} a=-1\pm\sqrt[]{4} \\ a=-1\pm2 \\ a=-1+2\text{ or }a=-1-2 \\ a=1\text{ or }a=-3 \end{gathered}[/tex]The zeros of the quadratic equation are 1 and -3.