Explanation:
Given the equation:
[tex]y=\frac{1}{2}x+\frac{11}{6}[/tex]Comparing it with the slope-intercept form: y=mx+b
[tex]\text{Slope,m}=\frac{1}{2}[/tex]Definition: Two lines are perpendicular if the product of the slopes is -1.
Let the slope of the new line = n
[tex]\begin{gathered} \frac{1}{2}n=-1 \\ n=-2 \end{gathered}[/tex]Substitute the slope, -2 and point (4,-5) in the slope-point form:
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-(-5)=-2(x-4) \end{gathered}[/tex]We then express it in the slope-intercept form:
[tex]\begin{gathered} y+5=-2x+8 \\ y=-2x+8-5 \\ y=-2x+3 \end{gathered}[/tex]The equation of the perpendicular line is y=-2x+3.
Answer:
[tex]y=-2x+3[/tex]