Respuesta :

Explanation:

Given the equation:

[tex]y=\frac{1}{2}x+\frac{11}{6}[/tex]

Comparing it with the slope-intercept form: y=mx+b

[tex]\text{Slope,m}=\frac{1}{2}[/tex]

Definition: Two lines are perpendicular if the product of the slopes is -1.

Let the slope of the new line = n

[tex]\begin{gathered} \frac{1}{2}n=-1 \\ n=-2 \end{gathered}[/tex]

Substitute the slope, -2 and point (4,-5) in the slope-point form:

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-(-5)=-2(x-4) \end{gathered}[/tex]

We then express it in the slope-intercept form:

[tex]\begin{gathered} y+5=-2x+8 \\ y=-2x+8-5 \\ y=-2x+3 \end{gathered}[/tex]

The equation of the perpendicular line is y=-2x+3.

Answer:

[tex]y=-2x+3[/tex]