Solution:
From the given question, we have
To solve for the ramp angle from the ground, we use trigonometric ratios.
Thus, we have
[tex]\sin\theta=\frac{opposite}{hypotenuse}[/tex]This gives
[tex]\begin{gathered} \sin\theta=\frac{11.5}{175} \\ \Rightarrow\sin\theta=0.06571 \\ take\text{ the sine inverse of both sides} \\ \sin^{-1}(\sin\theta)=\sin^{-1}(0.06571) \\ \theta=3.77^{\circ\:} \\ \therefore \\ \theta\approx3.8\degree(nearest\text{ tenth\rparen} \end{gathered}[/tex]Hence, to the nearest tenth, the ramp angle is
[tex]3.8\degree[/tex]