Solution
Given a rectangle of the dimension
[tex]\begin{gathered} \text{Length}=L=4\text{ in} \\ \text{Breadth}=B=2.6\text{ in} \end{gathered}[/tex]To find the area, A, of a rectangle, the formula is
[tex]A=LB[/tex]Where
[tex]\begin{gathered} 1ft=12\text{in} \\ 4\text{ in}=\frac{1}{3}ft \\ 2.6\text{ in}=\frac{13}{60}ft \end{gathered}[/tex]Substitute the values into the formula above
[tex]\begin{gathered} A=LB \\ A=\frac{1}{3}\times\frac{13}{60}=\frac{13}{180}=0.07222ft^2 \\ A=0.07ft^2\text{ (nearest hundredth)} \end{gathered}[/tex]Hence, the answer is 0.07ft² (nearest hundredth)