Respuesta :

Find all values of y such that the distance between (5,y) and (-7,2) is 18.

Remember that

The formula to calculate the distance between two points is equal to

[tex]d=\sqrt[]{(y2-y1)^2+(x2-x1)^2}[/tex]

substitute the given values

[tex]18=\sqrt[]{(y-2)^2+(5+7)^2}[/tex][tex]18=\sqrt[]{(y-2)^2+144}[/tex]

squared both sides

[tex]18^2=(y-2)^2+144[/tex]

solve for y

[tex]\begin{gathered} (y-2)^2=324-144 \\ (y-2)^2=180 \end{gathered}[/tex]

take square root on both sides

[tex]\begin{gathered} y-2=\pm\sqrt[]{180} \\ y=2\pm\sqrt[]{180} \end{gathered}[/tex]

simplify

[tex]y=2\pm6\sqrt[]{5}[/tex]