Answer:
The nth term of the given sequence can be determined using the function;
[tex]a_n=2n+8[/tex]Explanation:
Given the sequence;
[tex]10,12,14,16,\ldots[/tex]The sequence is an arithmetic progression with a common difference d and first term a;
[tex]\begin{gathered} d=12-10 \\ d=2 \\ a=10 \end{gathered}[/tex]Recall that the nth term of an AP can be calculated using the formula;
[tex]a_n=a+(n-1)d[/tex]substituting the given values;
[tex]\begin{gathered} a_n=a+(n-1)d \\ a_n=10+(n-1)2 \\ a_n=10+2(n-1) \\ a_n=10+2n-2 \\ a_n=2n+10-2 \\ a_n=2n+8 \end{gathered}[/tex]Therefore, the nth term of the given sequence can be determined using the function;
[tex]a_n=2n+8[/tex]