Respuesta :

EXPLANATION:

Given;

We are given a symmetrical pool as indicated in the attached picture.

The pool consists of two sectors and two triangles and each pair has the same dimensions.

The dimensions are as follows;

[tex]\begin{gathered} Sector: \\ Radius=30 \\ Central\text{ }angle=2.21\text{ }radians \end{gathered}[/tex][tex]\begin{gathered} Triangle: \\ Slant\text{ }height=30 \\ Vertical\text{ }height=25 \\ Base=20 \end{gathered}[/tex]

Required;

We are required to calculate the area of the pool.

Step-by-step solution;

We shall begin by calculating the area of the sector and the formula for the area of a sector is;

[tex]\begin{gathered} Area\text{ }of\text{ }a\text{ }sector: \\ Area=\frac{\theta}{2\pi}\times\pi r^2 \end{gathered}[/tex]

Where the variables are;

[tex]\begin{gathered} \theta=2.21\text{ }radians \\ r=30 \\ \pi=3.14 \end{gathered}[/tex]

We now substitute and we have the following;

[tex]Area=\frac{2.21}{2\pi}\times\pi\times30^2[/tex][tex]Area=\frac{2.21}{2}\times900[/tex][tex]Area=994.5ft^2[/tex]

Since there are two sectors of the same dimensions, the area of both sectors therefore would be;

[tex]Area\text{ }of\text{ }sectors=994.5\times2[/tex][tex]Area\text{ }of\text{ }sectors=1989ft^2[/tex]

Next we shall calculate the area of the triangles.

Note the formula for calculating the area of a triangle;

[tex]\begin{gathered} Area\text{ }of\text{ }a\text{ }triangle: \\ Area=\frac{1}{2}bh \end{gathered}[/tex]

Note the variables are;

[tex]\begin{gathered} b=20 \\ h=25 \end{gathered}[/tex]

The area therefore is;

[tex]Area=\frac{1}{2}\times20\times25[/tex][tex]Area=\frac{20\times25}{2}[/tex][tex]Area=250[/tex]

For two triangles the area would now be;

[tex]Area\text{ }of\text{ }triangles=250\times2[/tex][tex]Area\text{ }of\text{ }triangles\text{ }equals=500ft^2[/tex]

Therefore, the area of the pool would be;

[tex]\begin{gathered} Area\text{ }of\text{ }pool: \\ Area=sectors+triangles \end{gathered}[/tex][tex]\begin{gathered} Area=1989+500 \\ Area=2489ft^2 \end{gathered}[/tex]

Rounded to the tens place, we would now have,

ANSWER:

[tex]Area=2,490ft^2[/tex]

Option D is the correct answer