SOLUTION
Using the order of operations we have
[tex]\text{PEMDAS}[/tex]where
[tex]\begin{gathered} P=\text{parenthesis} \\ E=\text{Exponential } \\ M=\text{ Multiplication } \\ D=\text{Division } \\ A=\text{Addition } \\ S=\text{Subtraction } \end{gathered}[/tex]Note: Multiplication and Division operate at the same level but we consider the operation that appears first from the left hand sides of the equation given the same as Addition and subtraction.
Given the equation.
[tex]4(x-8)+14=-24[/tex]Expand the parenthesis
[tex]4x-32+14=-24[/tex]Add the like terms
[tex]4x-18=-24[/tex]Add 18 to both sides of the equation
[tex]\begin{gathered} 4x-18+18=-24+18 \\ 4x=-6 \end{gathered}[/tex]Divide both sides by 4
[tex]\begin{gathered} \frac{4x}{4}=\frac{-6}{4} \\ \\ x=\frac{-3}{2} \end{gathered}[/tex]Therefore
x= -3/2