Given the pre-image coordinates (0, 5), (-3, 2), (4, -1) and transformed image coordinates (2, -5), (-1, -2), (6, 1), what is the coordinate transformation in function notation?

Respuesta :

Given:

The pre-image coordinates (0, 5), (-3, 2), (4, -1) and transformed image coordinates (2, -5), (-1, -2), (6, 1).

Required:

We need to find the transformation in function notation.

Explanation:

Let (x,y) be the pre-image coordinate and (x',y') be the transformed image coordinates.

The transformation is

[tex](x,y)\rightarrow(x^{\prime},y^{\prime}).[/tex]

Consider the points (0,5) and (2,-5).

Substitute the values in the transformation.

[tex](0,5)\rightarrow(2,-5)[/tex]

[tex](0,5)\rightarrow(0+2,-(5))[/tex]

Let x =0 and y =5, we get

[tex](x,y)\rightarrow(x+2,-y)[/tex]

Consider the points (-3,2) and (-1,-2).

[tex](-3,2)\rightarrow(-1,-2)[/tex][tex]Use\text{ }-3+2=-1.[/tex]

[tex](-3,2)\rightarrow(-3+2,-(2))[/tex]

Let x =-3 and y=2.

[tex](x,y)\rightarrow(x+2,-y)[/tex]

Consider the points (4,-1) and (6,-1).

[tex](4,-1)\rightarrow(6,1)[/tex][tex]Use\text{ }4+2=6.[/tex]

[tex](4,-1)\rightarrow(4+1,-(1))[/tex]

[tex](x,y)\rightarrow(x+2,-y)[/tex]

[tex]f(x,y)=(x+2,-y)[/tex]

Final answer:

[tex](x,y)\rightarrow(x+2,-y)[/tex]

[tex]f:(x,y)\rightarrow(x+2,-y)[/tex]