Respuesta :

[tex]1152\text{ }\pi cm^3[/tex]

Explanation

the volume of a hemisphere is given by:

[tex]\text{Volume}_{hemisphere}=\frac{2}{3}\cdot\pi\cdot r^3[/tex]

where r is the radius

then

[tex]\begin{gathered} Diameter=2\text{radius} \\ \frac{\text{Diameter}}{2}=r \\ \frac{24\text{ cm}}{2}=r \\ r=12\text{ cm} \end{gathered}[/tex]

now, replace.

[tex]\begin{gathered} \text{Volume}_{hemisphere}=\frac{2}{3}\cdot\pi\cdot r^3 \\ \text{Volume}_{hemisphere}=\frac{2}{3}\cdot\pi\cdot(12\operatorname{cm})^3 \\ \text{Volume}_{hemisphere}=\frac{2}{3}\cdot\pi\cdot1728cm^3 \\ \text{Volume}_{hemisphere}=1152\text{ }\pi cm^3 \end{gathered}[/tex]

so, the answer is

[tex]\text{Volume}_{hemisphere}=1152\text{ }\pi cm^3[/tex]

I hope this helps you