STEP - BY - STEP EXPLANATION
What to find?
The equation for the hyperbola that models the sides of the cooling tower assuming that the center of the hyperbola occurs at the height for which the diameter is least.
Given:
Minimum diameter = 76 feet
Height = 173 feet
Diameter of the top of cooling tower = 93 feet
Total height of tower = 250 feet
Consider the general hyperbolic formula below:
[tex]\frac{x^2}{a^2}-\frac{y^2}{b^2}=1[/tex]But;
2a = 76
⇒ a = 38
x=93/2 =46.5
y=250 - 173 =77
Substitute the values into the formula above and determine the value of b.
[tex]\frac{(46.5)^2}{38^2}-\frac{77^2}{b^2}=1[/tex][tex]b=109.18[/tex]Now substitute the values a= 38 and b=109.18 into the general formula
[tex]\frac{x^2}{38^2}-\frac{y^2}{109.18^2}=1[/tex]ANSWER
[tex]\frac{x^2}{38^2}-\frac{y^2}{109.18^2}=1[/tex]