To solve this problem, we recall that the formula for the coordinates of the midpoint between (x₁,y₁), and (x₂,y₂) is:
[tex]\begin{gathered} x=\frac{x_1+x_2}{2}, \\ y=\frac{y_1+y_2}{2}. \end{gathered}[/tex]Substituting the given coordinates for the midpoint and one of the terminal points, we get:
[tex]\begin{gathered} 0=\frac{4+s_x}{2}, \\ 5=\frac{7+s_y}{2}. \end{gathered}[/tex]Solving the above equations for s_x, and s_y, we get:
[tex]\begin{gathered} s_x=0*2-4, \\ s_y=5*2-7. \end{gathered}[/tex]Finally, we get that the coordinates of s are:
[tex](-4,3).[/tex]Answer:
[tex](-4,3).[/tex]