Expanding the expressions,
[tex]\sqrt[]{49\cdot2}\text{ +}\sqrt[]{2\cdot2\cdot2}[/tex][tex]\sqrt[]{7^2\cdot2}\text{ + }\sqrt[]{2^3}[/tex][tex]\sqrt[]{7^2}\text{ }\times\sqrt[]{2}\text{ +}\sqrt[]{2^2}\text{ }\times\sqrt[]{2}[/tex][tex]\begin{gathered} 7\times\sqrt[]{2}\text{ +2}\times\sqrt[]{2} \\ 7\sqrt[]{2}\text{ + 2}\sqrt[]{2} \\ =9\sqrt[]{2} \end{gathered}[/tex]Hence, in the boxes where you have the term missed, the correct answer to put there is:
[tex]\sqrt[]{7^2\text{ }}\text{not }\sqrt[]{7}[/tex]