Answer:
[tex]\frac{4}{3}+\frac{4\sqrt{3}}{3}i[/tex]Explanation:
Given:
[tex]\frac{8(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2})}{3(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6})}[/tex]To find:
The quotient and write it in rectangular form using exact values
Recall the below;
[tex]\cos\theta+i\sin\theta=e^{i\theta}[/tex]So we can go ahead and rewrite the given expression and simplify as shown below;
[tex]\begin{gathered} \frac{8(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2})}{3(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6})} \\ =\frac{8(e^{\frac{i\pi}{2}})}{3(e^{\frac{i\pi}{6}})} \\ =\frac{8}{3}(e^{\frac{i\pi}{2}-\frac{i\pi}{6}}) \\ =\frac{8}{3}(e^{i\pi(\frac{1}{2}-\frac{1}{6})} \\ =\frac{8}{3}e^{\frac{i\pi}{3}} \end{gathered}[/tex]So we'll have;
[tex]\begin{gathered} \frac{8}{3}(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}) \\ =\frac{8}{3}(\frac{1}{2}+i\frac{\sqrt{3}}{2}) \\ =\frac{8}{6}+i\frac{8\sqrt{3}}{6} \\ =\frac{4}{3}+\frac{i4\sqrt{3}}{3} \end{gathered}[/tex]