SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the formula for area of a rectangle
[tex]Area=length\times width[/tex]STEP 2: Write the given measure of the sides
[tex]\begin{gathered} length=3x+2 \\ width=2x-1 \end{gathered}[/tex]STEP 3: Calculate the area
By substitution,
[tex]\begin{gathered} Area=(3x+2)(2x-1) \\ \mathrm{Apply\:FOIL\:method}:\quad \left(a+b\right)\left(c+d\right)=ac+ad+bc+bd \\ \left(3x+2\right)\left(2x-1\right)=3x\cdot \:2x+3x\left(-1\right)+2\cdot \:2x+2\left(-1\right) \\ =3x\cdot \:2x+3x\left(-1\right)+2\cdot \:2x+2\left(-1\right) \\ =6x^2+x-2 \end{gathered}[/tex]Hence, the area of the rectangle is
[tex]6x^2+x-2[/tex]