EXPLANATION:
We are given the linear equation;
[tex]y-4=3(x+1)[/tex]To graph this equation, we would begin by re-writing the equation in the slope-intercept form, which is;
[tex]y=mx+b[/tex]To do this, we first expand the parenthesis;
[tex]y-4=3x+3[/tex]Next we add 4 to both sides;
[tex]y-4+4=3x+3+4[/tex][tex]y=3x+7[/tex]We can now begin to plot the various points on the line. Starting from, x = -2 we would have;
[tex]\begin{gathered} x=-2: \\ y=3(-2)+7 \\ y=-6+7 \\ y=1 \end{gathered}[/tex]We can now go on and plot other points depending on the limit imposed by the graph page.
However, what we have here shows the coordinates from which we may begin;
ANSWER:
[tex]\begin{gathered} (-2,1) \\ That\text{ is;} \\ x=-2,y=1 \end{gathered}[/tex]