Solution
Step 1:
The function reaches a maximum where the derivative is equal to 0.
Find the first derivative of the function.
Step 2:
Write the function
[tex]R(x)\text{ = 290x - 0.52x}^2[/tex]Step 3
Find the first derivative
[tex]\begin{gathered} R(x)=\text{ 290x -0.52x}^2 \\ R^{\prime}(x)\text{ = 290 - 1.04x} \end{gathered}[/tex]Step 4:
The function reaches a maximum where the derivative is equal to 0.
[tex]\begin{gathered} 290\text{ - 1.04x = 0} \\ 1.04x\text{ = 290} \\ \text{x = }\frac{290}{1.04} \\ \text{x = 278.8 }\approx\text{ 279} \end{gathered}[/tex]So the number of units which produce the maximum revenue = 279
Step 5:
Substituting this value in the original equation gives the revenue:
[tex]\begin{gathered} R\text{ = 290x - 0.52x}^2 \\ R\text{ = 290}\times279\text{ - 0.52 }\times\text{ 279}^2 \\ R\text{ = 80910 - 42034.14} \\ R\text{ = \$38875.86} \end{gathered}[/tex]Maximum revenue = $38875.86