Write a general formula to describe the variation. M varies directly with the square of d and inversely with the square root of x; M=12 when d=3 and x=4

Respuesta :

Given that 'M' varies directly with the square of 'd',

[tex]M\propto d^2[/tex]

Given that 'M' varies inversely with the square root of 'x',

[tex]M\propto\frac{1}{\sqrt[]{x}}[/tex]

Combining the relationships,

[tex]M\propto\frac{d^2}{\sqrt[]{x}}[/tex]

Let 'k' be the constant of proportionality. Then,

[tex]M=k\cdot\frac{d^2}{\sqrt[]{x}}[/tex]

Given that M=12 when d=3 and x=4,

[tex]\begin{gathered} 12=k\cdot\frac{(3)^2}{\sqrt[]{4}} \\ 12=k\cdot\frac{9}{2} \\ k=\frac{12\cdot2}{9} \\ k=\frac{8}{3} \end{gathered}[/tex]

Substitute the value of this constant in the general expression,

[tex]M=\frac{8}{3}\cdot\frac{d^2}{\sqrt[]{x}}[/tex]

Thus, the required general formula to describe the relation is obtained as,

[tex]M=\frac{8}{3}\cdot\frac{d^2}{\sqrt[]{x}}[/tex]