a) Two sides of a triangle are concruent when they are the same length. First calculate the lenght of each side
[tex]\begin{gathered} AC^2=\text{ (X\_c-X\_a)}^2+(Y_a-Y_c)^2=(8-4)^2+(7-1)^2=\text{ 52} \\ AC=\sqrt{52}=7.2 \end{gathered}[/tex][tex]\begin{gathered} AB^2=(X_a-X_b)^2+(Y_a-Y_b)^2=(4-0)^2+(7-0)^2=\text{ 65} \\ AB=\sqrt{65}=8.06\approx8 \end{gathered}[/tex][tex]\begin{gathered} BC^2=(X_c-X_b)^2+(Y_c-Y_b)^2=(8-0)^2+(1-0)^2=\text{ 65 } \\ BC=\sqrt{65}=8.06\approx8 \end{gathered}[/tex]Sides AB and BC aren congruent.
b)
The bisector divides the triangle in exact halves.
The bisector is the blue line, in green you'll se the length of each side.
c)