Answer:
The number of years you should invest the principal is;
[tex]8\text{ years}[/tex]Explanation:
Given;
[tex]\begin{gathered} \text{Interest i = \$175.84} \\ \text{ Principal P = \$}314 \\ \text{Rate r = 7\% =0.07} \end{gathered}[/tex]Recall that the formula for simple interest is;
[tex]\begin{gathered} i=P\times r\times t \\ t=\frac{i}{Pr} \\ \text{where;} \\ t=\text{time of investment} \end{gathered}[/tex]substituting the given values;
[tex]\begin{gathered} t=\frac{i}{Pr} \\ t=\frac{175.84}{314\times0.07} \\ t=\frac{175.84}{21.98} \\ t=8 \end{gathered}[/tex]Therefore, the number of years you should invest the principal is;
[tex]8\text{ years}[/tex]We can also solve as;
[tex]\begin{gathered} i=P\times r\times t \\ 175.84=314\times0.07\times t \\ 175.84=21.98t \end{gathered}[/tex]then we can divide both sides by 21.98;
[tex]\begin{gathered} \frac{175.84}{21.97}=\frac{21.98t}{21.98} \\ 8=t \\ t=8\text{ years} \end{gathered}[/tex]