A line segment, ST, has endpoints S(-7,-3) and T(-1,-1). Which of the following equations represents the perpendicular bisector of the line segment? A. y = 2x - 15 B. y = -3x - 14 C. y = 6x - 14 D. y = -3x - 20

Respuesta :

SOLUTION

The given points are: (-7,-3) and (-1,-1)

The slope of the line segment is:

[tex]\begin{gathered} m=\frac{-1-(-3)}{-1-(-7)} \\ m=\frac{-1+3}{-1+7} \\ m=\frac{2}{6} \\ m=\frac{1}{3} \end{gathered}[/tex]

Recall that the product if solpes of perpendicular line give -1.

The the slope of the perpendicula bisector is:

[tex]\begin{gathered} m_1=\frac{1}{\frac{1}{3}} \\ m=3 \end{gathered}[/tex]

Therefore the slope of the perpendicular bisector is -3.

Recall that the perpendicular bisector passes through the center of a line segment.

Hence the perpendicular bisector will pass through:

[tex]\begin{gathered} (\frac{-7-1}{2},\frac{-3-1}{2}) \\ =(\frac{-8}{2},\frac{-4}{2}) \\ =(-4,-2) \end{gathered}[/tex]

Using the point slope form, the equation of the perpendicular bisector is:

[tex]\begin{gathered} y-(-2)=-3(x-(-4)) \\ y+2=-3x-12 \\ y=-3x-12-2 \\ y=-3x-14 \end{gathered}[/tex]

Therefore the required equation is:

[tex]y=-3x-14[/tex]