Suppose that the functions g and h are defined for all real numbers x as follows. 9g(x) = 2x ^ 2 h(x) = x - 3Write the expressions for (hg)(x) and (h + g)(x) and evaluate (h - g)(- 3) .

Suppose that the functions g and h are defined for all real numbers x as follows 9gx 2x 2 hx x 3Write the expressions for hgx and h gx and evaluate h g 3 class=

Respuesta :

Given

[tex]\begin{gathered} g(x)=2x^2 \\ h(x)=x-3 \end{gathered}[/tex]

To write the expressions of

[tex]\begin{gathered} (h\cdot g)(x) \\ (h+g)(x) \end{gathered}[/tex]

And to evaluate,

[tex](h-g)(-3)[/tex]

Explanation:

It is given that,

[tex]\begin{gathered} g(x)=2x^2 \\ h(x)=x-3 \end{gathered}[/tex]

Then,

[tex]\begin{gathered} (h\cdot g)(x)=h(x)\cdot g(x) \\ =\left(x-3\right)\cdot\left(2x^2\right) \\ =2x^3-6x^2 \end{gathered}[/tex]

Also,

[tex]\begin{gathered} (h+g)(x)=h(x)+g(x) \\ =(x-3)+2x^2 \\ =2x^2+x-3 \end{gathered}[/tex]

And,

[tex]\begin{gathered} (h-g)(-3)=h(-3)-g(-3) \\ =(-3-3)-2(-3)^2 \\ =-6-(2\times9) \\ =-6-18 \\ =-24 \end{gathered}[/tex]

Hence, the answer is,

[tex]\begin{gathered} (h\cdot g)(x)=2x^3-6x^2 \\ (h+g)(x)=2x^2+x-3 \\ (h-g)(-3)=-24 \end{gathered}[/tex]